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Abstract Virtual knot theory offers the possibility to consider knots and links
embedded on different surfaces. This paper analyzes nonplanarity of graphs obtained
from Gauss codes of virtual knots and links and their potential applications in
chemistry.
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1 Introduction

After introducing the basics of the virtual knot theory, extended Conway notation for
virtual knots and links, and Gauss codes corresponding to virtual knots and links, in
Sect. 2 provides an overview of the main properties of nonplanar graphs, including
nonplanarity criterion (Kuratowski’s Theorem) and the notion of graph crossing num-
ber. In order to discuss planarity of graphs obtained from Gauss codes of virtual knots
and links, we introduced graph preserving rules (Sect. 2.1). In Sect. 3 we consider
some “famous” (named) nonplanar graphs which can be obtained from Gauss codes
of the corresponding polyhedral virtual knots and links, in particular the graphs K5
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and K3,3 which correspond to the structure of the first synthesized molecules with non-
planar molecular graphs: the Simmons-Paquette molecule and Möbius ladders with
three rungs. For named nonplanar 3- and 4-valent graphs with at most 20 vertices we
obtained their corresponding virtual knots and links. Different classes of virtual knots
and links, rational, pretzel, and Montesinos, and criteria for determining planarity
of graphs obtained from their Gauss codes are discussed in Sect. 4. Similar criteria
are obtained for virtual knots and links derived from basic polyhedra, in particular
from 2-vertex connected basic polyhedra. We also derive virtual knots and links with
Gauss codes resulting in nonplanar graphs from the basic polyhedra with at most 12
crossings.

1.1 Basics of virtual knot theory

The virtual knot theory introduced by L. Kauffman is a “non-realizable” part of the
knot theory and gives the alternative answer to the question about realizability of Dow-
ker-Thistletwaite codes and embedding of knots and links (shortly KLs) on different
surfaces [1–5].

Virtual crossings are intersection points in the projection of a four-valent graph
onto RRR

2 or S2, which are not vertices of the original graph. For example, graph with
one vertex on a torus, turned into the alternating link, corresponds to the Hopf link,
and Borromean rings can be represented as a five-vertex graph on a torus: nonplanar
complete graph with five vertices K5. Projection of a Hopf link onto RRR

2 has two ver-
tices, where one vertex is the image of the vertex of the original graph, and the other
is the “new” virtual vertex (Fig. 1a).

The vertex of the projection corresponding to the vertex of the original graph is
called classical, and the other vertices are virtual. Virtual KL-diagrams are obtained
by introducing the relation “over-under” in classical vertices of a diagram:

Definition 1.1 A virtual link diagram is a 4-valent plane graph of the following struc-
ture: each vertex has an overcrossing or undercrossing, or is marked by a virtual
crossing.

The equivalence of virtual KLs can be described after introducing generalized
Reidemeister moves for virtual KLs [2–7].

(a) (b)

Fig. 1 a Hopf link on torus; b Gauss code of a trefoil with one virtual crossing
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(b)

(a)

Fig. 2 Generalized Reidemeister moves for virtual KLs

Definition 1.2 Generalized Reidemeister moves (Fig. 2a) consist of:

1. classical Reidemeister moves related to classical vertices;
2. virtual versions �′1, �′2, �′3 of Reidemeister moves;
3. the “semivirtual” version �′′3 of the third Reidemeister move.

Two virtual diagrams are equivalent if there exists a sequence of generalized Re-
idemeister moves transforming one diagram to the other one.

Definition 1.3 A virtual link is an equivalence class of virtual diagrams modulo gen-
eralized Reidemeister moves.

The remaining two versions of the third move (Fig. 2b) are forbidden. Actually, the
forbidden move is a very strong one: each virtual knot can be transformed to another
one using all generalized Reidemeister moves and the forbidden move [6].

1.2 Extended Conway notation for virtual KLs

Conway notation for KLs is introduced by J.H. Conway in 1967 [8], and effectively
used in [7,9]. Here we introduce so-called extended Conway notation for virtual knots
and links using expanded Conway symbols, where every KL is expressed by elementary
tangles 1 and −1 (e.g., trefoil 3 = 1, 1, 1; figure-eight knot 2 2 = (1, 1) (1, 1), . . .),
and virtual crossings which are denoted by i . For example, Hopf link with a virtual
crossing is denoted as i, 1, a trefoil with a virtual crossing is i, 1, 1, etc. In order to
make the extended Conway symbols shorter we can use the following rules:

• product i i . . . i of the length n is denoted by in ;
• a sequence of n real positive crossings 1, . . . , 1 is denoted by 1n ;
• a sequence of n real crossings of negative sign −1, . . . ,−1 by (−1)n .
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Hence, a trefoil knot i, 1, 1 with one virtual crossing can be shortly written as i, 12,
and the virtual knot 2 i i i 3 can be written as 2 i3 3.

Compared with the other notations used for virtual KLs [2,3,10], extended Con-
way notation has a few advantages: it is understandable, very concise, preserves the
complete information about real KL from which a virtual KL is obtained by virtualiz-
ing some crossings, and enables a natural extension of particular KL symbols to the
families and classes of virtual KLs.

Conway notation of KLs and definitions of all terms used in this paper are given in
[7–9]. Here we restate the definitions of a rational KL, algebraic KL, basic polyhedron,
and polyhedral KL [7]:

Definition 1.4 A rational tangle is any finite product of elementary tangles. A rational
KL is a numerator closure of a rational tangle.

Definition 1.5 A tangle is algebraic if it can be obtained from elementary tangles
using the operations of sum and product. KL is algebraic if it is a numerator closure
of an algebraic tangle.

Definition 1.6 Basic polyhedron is a 4-regular, 4-edge-connected, at least 2-vertex
connected plane graph without bigons.

Definition 1.7 A link L is called algebraic link if there exists at least one diagram
of L which can be reduced to the basic polyhedron 1∗ by a finite sequence of bigon
collapses [7]. Otherwise it is a non-algebraic or polyhedral link.

1.3 Gauss codes of virtual KLs and their corresponding graphs

After introducing overcrossings (O), undercrossings (U ), and signs of crossings (+
or −), Gauss code of a virtual trefoil becomes U1 + O2 + O1 + U2+ [2,3,5].
In this paper we are interested in Gauss codes of virtual KLs treated as graphs.
Hence, we assign a simplified code to all of the knots. For example, the trefoil with
one virtual crossing corresponds to the code 1 2 1 2, the 4-valent multigraph given
by the cycle {{1, 2}, {2, 1}, {1, 2}, {2, 1}}, or by the list of unordered pairs of verti-
ces {{1, 2}, {1, 2}, {1, 2}, {1, 2}}. In the same way, Borromean rings with one virtual
crossing 6∗i and with the unsigned Gauss code {{1, 2, 3}, {4, 2, 5}, {1, 4, 3, 5}} give
cycles {{1, 2}, {2, 3}, {3, 1}}, {{4, 2}, {2, 5}, {5, 4}}, {{1, 4}, {4, 3}, {3, 5}, {5, 1}} cor-
responding to the components of these Borromean rings with one virtual crossing. Fur-
thermore, starting with the cycles we obtain the graph given by the list of unordered
pairs: {{1, 3}, {1, 2}, {2, 3}, {4, 5}, {2, 4}, {2, 5}, {1, 5}, {1, 4}, {3, 4}, {3, 5}}-the com-
plete graph K5. Since we restricted our attention to unsigned Gauss codes of virtual
KLs and their corresponding graphs (in fact, to the shadows of virtual KLs), we are
working only with alternating virtual KLs, i.e., virtual KLs derived from alternating
KLs. In the sense of the extended Conway notation, this means none of the symbols
contain negative entries.

If we compare the graphs obtained from a trefoil and Borromean rings, both with
one virtual crossing, we notice the fundamental difference: the graph obtained from
the virtual trefoil is planar, and the graph obtained from Borromean rings with a virtual
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crossing is nonplanar. This motivates the main questions of this paper: which virtual
KLs give Gauss codes resulting in nonplanar graphs and how they can be used for
the analysis of nonplanar 4-valent graphs occurring in chemistry. The restriction to
4-valent graphs is inherent to the proposed construction because our graphs originate
from knot theory. This restriction is not an essential obstacle for their applications in
chemistry, since the most of nonplanar molecules recognized in chemistry are carbon-
based.

2 Nonplanar graphs

Definition 2.1 A graph G is plane if it is drawn in plane (or on the sphere) with no
two edges crossing each other, and it is planar if it is isomorphic to a plane graph.
Otherwise, it is nonplanar.

Stereographic projection caries plane embeddings to embeddings on a sphere and
vice versa.

Definition 2.2 An embedding of a graph G is a drawing of G on a certain surface in
which the edges do not intersect.

A nonplanar graph can be always embedded on some surface, other then a plane
(or sphere). For example, all graphs of polyhedra are planar, and the graphs K5 and
K3,3 are nonplanar.

The most celebrated result about the planarity of graphs is Kuratowski’s Theorem
[12]. Two graphs G and G ′ are isomorphic modulo vertices of degree 2 if G is iso-
morphic to a graph G

′′
obtained from G ′ by the addition or deletion of vertices with

just two incident edges:

• • ←→ • • •

Theorem 2.1 (Kuratowski’s Theorem) Let G be a finite graph. G is planar iff it
contains no subgraph isomorphic to K5 or K3,3 modulo vertices of degree 2 [12].

Short proof of the sufficiency part of this theorem is given by Makarychev [13],
and the complete proof can be found, e.g., in the book [14].

The transformations described above are subdivision and contraction of a graph
edge. A subdivision of a graph G is a graph obtained from G by a finite number of the
following operations. Let v, w be the vertices of G which are connected by the edge
vw. Introduce a new vertex x and replace the edge vw by two edges vx and xw, i.e.,
insert a vertex x in the middle of an existing edge vw.

Definition 2.3 Replacing two adjacent vertices by a single vertex of a graph is the
operation called elementary contraction. The new vertex is joined to every other vertex
which was joined to one or both original two vertices. A contraction of G is any graph
that can be obtained from G by a finite sequence of elementary contractions.

These operations, subdivision and contraction, can be applied to any line segment
AB in RRR

3 replacing it by two line segments AC and C B or vice versa.
In the language of contraction, Kuratowski’s Theorem can be formulated as:
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Theorem 2.2 A graph G is planar iff it contains no subgraph which has K5 or K3,3
as a contraction.

A special kind of contraction where edges forming a bigon are contracted simul-
taneously plays an important role in analyzing KLs. We call such contraction a bigon
collapse [7].

Planar embeddings of graphs can contain intersections of edges, called crossings,
which are not the vertices of the graph. For planar graphs, there is always a plane dia-
gram that avoids such (nugatory) crossings. But an important invariant of nonplanar
graphs is their graph crossing number (usually denoted by k)—the minimal number of
edge crossings among all possible planar diagrammatic representations of the graph
[15,16].

Since it is defined over all possible diagrammatic representations of a graph in a
plane, the graph crossing number is an invariant very hard to compute. For planar
graphs it is always k(G) = 0, and if we are able to find a plane diagram of a nonplanar
graph G with one crossing, than k(G) = 1.

The length of the shortest graph cycle (if any) in a graph is called the girth of a
graph and denoted by c. For graphs without multiple edges and loops, c ≥ 3. The
girth of a graph G can be computed using Mathematica function Girth[G] [17]. If
e denotes the number of edges, and c the girth of G, the lower bound of the graph
crossing number k(G) is given [15] by the formula:

k(G) ≥ e − (v − 2)c

c − 2
. (2.1)

If the right side of the preceding formula is a negative integer,1 we conclude that
k ≥ 0.

Since we are interested only in graphs (shadows) of virtual KLs, all parameters in
their Conway symbols take only non-negative values.

A tangle of the form p1 p2 . . . pn where p1 ≥ 1 and all other pi ≥ 0 is called
(positive) rational tangle. A tangle of the form p1, p2, . . . , pn (n ≥ 3), where pi are
positive twists is called (positive) pretzel tangle, and a tangle of the form r1, r2, . . . , rn

(n ≥ 3), where ri are (positive) rational tangles not beginning with 1 is called (positive)
Montesinos tangle [7].

2.1 Graph preserving transformations

To shadows of virtual KLs, i.e., virtual KLs shown as plane graph diagrams with vir-
tual crossings and with real crossings without introduced relation “over”–“under” we
can apply graph transformation rules described in the following theorem, restricted to
positive tangles:

1 For some graphs, e.g., Petersen graph or Heawood graph given as the examples in the paper [15], this
formula gives the lower bound coinciding with known graph crossing numbers from Mathematica data
base. However, for Tietze graph with e = 18, v = 12, c = 3, whose crossing number is known to be equal
to k = 2, the approximation k ≥ −12 is essentially useless saying only that k ≥ 0.
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(d)

(c)

(b)

(a)

Fig. 3 Graph preserving moves

Theorem 2.3 The following transformation rules applied to virtual KLs containing
only positive tangles preserve the graphs obtained from their Gauss codes:

1. 1, i = i, 1 = 1 (Fig. 3a);
2. i2 = 0 (Fig. 3b);

Parts of positive rational tangles of the form p in q satisfy the following rules:
3. p 0 q = p + q;
4. p in q = p + q for n = 3k + 2 (k ≥ 0), and p q otherwise.

The following rules hold for every positive rational tangle r:
5. r i3k = r;
6. r i3k+1 = r i;
7. r i3k+2 = r i2 = r 0;
8. in r = i2 r = 0 r for n = 3k + 2 (k ≥ 0), and in r = r otherwise;

Positive Montesinos tangles r1, r2, . . . , rn satisfy the rule
9. r1 i, r2, . . . , rn = r1, r2, . . . , rn, i .

Transformation rules also include the rules shown in Fig. 3c,d.

Rules i2k = 0 and i2k+1 = i follow from the rule 2).
These rules preserve every graph G obtained from the Gauss code of a virtual KL

and can be used to reduce number of virtual crossings and draw virtual KLs with dia-
grams in which the number of virtual crossings is equal to the graph crossing number
k(G) of the graph G. Since plane diagrams of nonplanar graphs can have different
number of crossings, any nonplanar graph can be obtained from Gauss codes of two
or more different virtual KLs. For example, the complete graph K5 can be obtained
from the virtual knot 10∗i : i : i : i : i , as well as from the virtual link 6∗i , and the
other representation with one virtual crossing corresponds to the diagram of G with
graph crossing number k(G) = 1 (see Fig. 4d, e).

3 Some “famous” nonplanar graphs

The complete graph K5, a 4-valent graph with n = 5 vertices, corresponds to the
simplest regular simplex in four dimensions: pentatope. Usually it is drawn on the
plane as a graph with five crossings (Fig. 4a). However, its graph crossing num-
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Fig. 4 Complete graph K5: a its drawing with 5 crossings; b its drawing with one crossing; c virtual knot
10∗i : i : i : i : i ; d virtual link 6∗i ; e 3D graph; f molecular graph of Simmons-Paquette molecule

ber is k = 1 (Fig. 4b). The first representation of this graph can be obtained from
the virtual knot 10∗i : i : i : i : i with the Gauss code {1, 2, 3, 4, 2, 5, 4, 1, 5, 3}
(Fig. 4c), but its minimal crossing number representation is obtained from the vir-
tual link 6∗i , Borromean rings with one virtual crossing and with the Gauss code
{{1, 2, 3}, {4, 2, 5}, {1, 4, 3, 5}} (Fig. 4d). Figure 4e shows its 3D representation. In
chemistry, graph K5 corresponds to the molecular graph of the Simmons-Paquette
molecule, which was independently synthesized in 1981 by the laboratories of Sim-
mons and Magio [18,19] and of Paquette and Vazeux [19,20], the first synthesized
topologically nonplanar molecule. In the molecular graph of Simmons-Paquette mol-
ecule (Fig. 4f) hydrogen atoms are omitted, and three white circles represent oxygen
atoms. The vertices 1–5 define complete graph K5 with the graph crossing number 1.

The next family of nonplanar graphs consists of Möbius ladders with k rungs
(k ≥ 3) [19]. The first member of this family is the complete bipartite graph K3,3.
This graph is usually drawn in the plane with seven crossings, where one of them
is the triple crossing (Fig. 5a). However, the crossing number of the graph K3,3 is 1
(Fig. 5b). Graph K3,3 with the crossing number 1 can be obtained from the Gauss
code {{1, 2, 3, 4}, {2, 5, 6, 1}, {5, 4, 3, 6}} of the virtual link 2, 2, 2, i (Fig. 5c), and
represents Möbius ladders with three rungs which are bigons, with 3D graph shown
in Fig. 5d. In 1982, Walba et al. [22] synthesized the first molecular Möbius ladder
with three rungs, the molecule which resembles a Möbius strip in which the surface
of the strip is replaced by a ladder. This molecule is a polyether chain of 60 carbon
and oxygen atoms, where the rungs are C=C double bonds. Construction of numerous
KLs based on molecular Möbius ladders become possible when Q.Y. Zheng managed
to add twists to the Möbius ladders in 1990 [21]. In fact, after breaking the rungs,
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Complete bipartite graph K3,3: (a) its drawing with 7 crossings; (b) with one crossing; (c) virtual
link 2, 2, 2, i ; (d) graph 3D; (e) virtual link 2, 2, 2, 2, 2, i ; (f) Möbius ladder with 5 rungs

Möbius multi-strand twisted ladder becomes molecular closed braid representation of
a KL. Möbius ladder with k rungs are obtained as the Gauss code of the virtual link
2, 2, 2, . . . , 2, i , where number 2 occurs k times (k ≥ 3) (Fig. 5e).2

Since we are dealing with nonplanar graphs that originate from virtual knot the-
ory as Gauss codes of virtual KLs, we restrict our consideration to 3- and 4-regular
nonplanar graphs with at most n = 20 vertices. The number of nonplanar graphs
with n vertices (n ≥ 5) is given by the sequence 1, 14, 222, 5380, 194815, . . ., the
sequence A145269 from N. Sloane’s “The Online Encyclopedia of Integer Sequences”
[23], and the number of 3- and 4-regular nonplanar graphs is also very large even for
relatively small values of n. Hence, we consider only selected “famous” (or named)
3- and 4-regular graphs with n ≤ 20 vertices. For all of them we computed their rep-
resentations coming from virtual knot theory, as graphs corresponding to Gauss codes
of virtual KLs. Our goal was to obtain graphs with the minimal number of crossings
and succeeded in that for all graphs except “MoebiusK antorGraph”.3

The following list contains selected named nonplanar 3- and 4-regular graphs, given
by their number of vertices n (10 ≤ n ≤ 20), name, vertex valence, known or esti-
mated graph crossing number k, virtual knot or link from which the graph in question
is obtained from its Gauss code, and its number of components c (Figs. 6, 7). The
names of the graphs are taken from Mathematica GraphData base [24].

2 Double bonds are represented by bold (black) edges, respectively, in both graph diagrams and graph 3D
images.
3 Notice that for Möbius Kantor graph the lower bound of graph crossing number obtained from formula
(2.1) is 3, and in the paper [16] is mentioned that the 4-crossing version of the Möbius Kantor graph can
probably be improved.
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Fig. 6 Petersen graph, its corresponding virtual knot 6∗2.2.2 i.2 0.2 0.i , and 3D graph

Fig. 7 Franklin graph, its corresponding virtual link (2, i, 2), (2, i, 2), (2, i, 2), and 3D graph

n Name Val k KL c

10 “PetersenGraph” 3 2 6∗2.2.2 i.2 0.2 0.i 1
12 “FranklinGraph” 3 3 (2, i, 2), (2, i, 2), (2, i, 2) 5
12 “T ietzeGraph” 3 3 6∗(i, 2) 0.2 0.(i, 2) 0.2 0.(i, 2) 0.2 0 4
12 “ChvatalGraph” 4 8 2049773∗i : i :: .i.i.i.i.i :::: i 3
14 “HeawoodGraph” 3 3 10∗∗2 0.2 0.i.2 0.2 0.i.2 0.2 0.i.2 0 1
16 “MoebiusK antorGraph” 3 4 138∗2 0.2 0.i.2 0.i.2 0 : 2.2.(i, 2) 0.i.i 2
18 “PappusGraph” 3 5 1413∗2.i.i.2.2.2.2.2.i.i.2.2.i.2 1
18 {“BlanusaSnark”, {1, 1}} 3 6 15127∗i.2.2.2 0.2 0.i.2 0.2 0.i.i.2 0.2 0.2 0.i.i 1
18 {“BlanusaSnark”, {1, 2}} 3 4 1312∗i.2.2 0.2.2.i.i.i.2.2 0.2 0.2 0.2 2
20 “DesarguesGraph” 3 6 1448∗2.i.2 0.2 0.(i, 2) 0.(i, 2) 0.i.2.2.i.i.2.2 0.2 0 2
20 “Flower Snark J5” 3 5 1599∗i.2.2.i.i.2 0.2 0.2 0.2.i.i.2.2 0.2 0.2 6

4 Classes of virtual KLs and nonplanar graphs

Applying Theorem 2.3 to different classes of virtual KLs: rational, pretzel, and Monte-
sinos KLs with positive tangles, we prove the following theorems (Figs. 8, 9):

Theorem 4.1 All rational virtual KLs have Gauss codes which result in planar graphs.

Tangle of the form i k is called a virtual twist of the length k.
KL of the form p1, p2, . . . , pn (pi ≥ 2, i = 1, 2, . . . , n, n ≥ 3) where all p-tan-

gles are positive integer tangles (twists) is an alternating pretzel KL.

Theorem 4.2 Virtual alternating pretzel KL has a Gauss code which represents a
nonplanar graph iff it contains an odd number of virtual twists of an odd length, and
all other twists contain at least two real crossings.

Proof Applying reduction rules 1) i, 1 = 1, i = 1 (Fig. 3a) and 2) i2 = i (Fig. 3b)
from Theorem 2.3, to pretzel KL of the mentioned form reduces it to pretzel KL con-
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Fig. 8 Tietze graph, 6∗(i, 2) 0.2 0.(i, 2) 0.2 0.(i, 2) 0.2 0 its corresponding virtual link, and 3D graph

Fig. 9 Chvatal graph, its corresponding virtual link 2049773∗i : i :: .i.i.i.i.i :::: i , and 3D graph

Fig. 10 Heawood graph, its corresponding virtual knot 10∗∗2 0.2 0.i.2 0.2 0.i.2 0.2 0.i.2 0, and 3D graph

sisting of n twists with all real crossings, each of them with the length at least 2, and a
single virtual crossing obtained by reduction from an odd number of the virtual twists
of odd lengths. The obtained KL has the Gauss code resulting in Möbius ladders with
n twisted rungs. The proof in the opposite way is straightforward. �	

For example, virtual pretzel link (1, i, 1), 3, (1, 1, i, i, i), (i, i, i) satisfies the con-
ditions of the preceding theorem and reduces to the virtual link 2, 3, 2, i . Its Gauss
code results in Möbius ladders with three twisted rungs (Figs. 10, 11).

Corollary 4.1 Only nonplanar graphs that can be obtained from Gauss codes of vir-
tual pretzel KLs are Möbius ladders with twisted rungs.

KL of the form r1, r2, . . . , rn (n ≥ 3) where all r -tangles are rational tangles not
beginning with 1 is called Montesinos KL.

Theorem 4.3 Virtual Montesinos KL has the Gauss code which represents a nonpla-
nar graph iff it contains an odd number of r-tangles ending by virtual twists of odd
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Fig. 11 Möbius Kantor graph, its corresponding virtual link 138∗2 0.2 0.i.2 0.i.2 0 : 2.2.(i, 2) 0.i.i , and
3D graph

Fig. 12 Pappus graph, its corresponding virtual knot 1413∗2.i.i.2.2.2.2.2.i.i.2.2.i.2, and 3D graph

lengths, their preceding twists in the same rational tangles contain at least one real
crossing, and each other r-tangle does not end with a virtual twist.

For example, virtual Montesinos link 3 (i, i, i), 2 2, 5 (1, i, 1, i), 4, 2, 4 (1, i, i),
2 3 i, 2 i satisfies the conditions of the preceding theorem. Applying the reduction
rules 1) i, 1 = 1, i = 1 and 2) i2 = i from Theorem 2.3, it reduces to a virtual
KL3 i, 2 2, 5 2, 4, 2, 4 1, 2 3 i, 2 i . Further reduction using rules 9) and 2) gives the
virtual link 3, 2 2, 5 2, 4, 2, 4 1, 2 3, 2, i with the Gauss code corresponding to the
nonplanar graph.

Corollary 4.2 Only nonplanar graphs that can be obtained from Gauss codes of vir-
tual pretzel KLs are Möbius ladders with branched and twisted rungs, with the graph
crossing number 1.

Based on the preceding theorems and the reduction rules from Theorem 2.3, we
can make conclusions about planarity of graphs obtained from Gauss codes of alge-
braic virtual KLs (Figs. 12, 13). For example, product of two Montesinos tangles
yields a nonplanar graph if at least one of them gives a nonplanar graph, i.e., sat-
isfies the conditions of Theorem 4.3. A nice example of the family of nonplanar
graphs that can be obtained from algebraic virtual KLs are n-crossed prism graphs
(n ≥ 3), beginning with the Franklin graph, obtained from virtual links of the form
(2, i, 2), (2, i, 2), . . . , (2, i, 2), where the tangle (2, i, 2) repeats n times.

A vertex cut set of a connected graph G is a set of vertices whose removal renders
G disconnected.
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Fig. 13 Blanusa Snark 1, its corresponding virtual knot 15127∗i.2.2.2 0.2 0.i.2 0.2 0.i.i.2 0.2 0.2 0.i.i , and
3D graph

Fig. 14 Blanusa Snark 2, its corresponding virtual link 1312∗i.2.2 0.2.2.i.i.i.2.2 0.2 0.2 0.2, and 3D graph

Fig. 15 Desargues graph, its corresponding virtual link 1448∗2.i.2 0.2 0.(i, 2) 0.(i, 2) 0.i.2.2.i.i.2.2 0.2 0,
and 3D graph

Theorem 4.4 For virtual KLs with v virtual crossings derived from a basic polyhedron
with n crossings the following statements hold:

• all virtual KLs obtained from a basic polyhedron that is not 2-vertex connected
with v = 1 have Gauss codes resulting in nonplanar graphs;

• all virtual KLs obtained from a 2-vertex connected basic polyhedron with v = 1
have Gauss codes resulting in planar graphs if the virtual crossing belongs to the
cut set of the basic polyhedron, and in nonplanar graphs otherwise;

• all virtual KLs obtained from a basic polyhedron that is not 2-vertex connected
with 2 ≤ v ≤ n − 5 have Gauss codes resulting in planar and nonplanar graphs;

• all virtual KLs obtained from a basic polyhedron with v ≥ n−4 have Gauss codes
resulting in planar graphs (Figs. 14, 15).

Theorem 4.5 A 2-vertex connected basic polyhedron with two virtual crossings,
where one coincides with a cut vertex, gives virtual KL with Gauss code resulting
in a nonplanar graph iff the other virtual crossing does not coincide with the other
cut vertex, and a planar graph otherwise.

123



J Math Chem (2011) 49:2250–2267 2263

Fig. 16 Flower Snark J5, its corresponding virtual link 1599∗i.2.2.i.i.2 0.2 0.2 0.2.i.i.2.2 0.2 0.2, and 3D
graph

Fig. 17 The basic polyhedra 6∗, 8∗, and 9∗

Theorem 4.5 can be generalized if the virtual crossings are replaced by arbitrary
virtual rational, pretzel, or Montesinos tangles (Fig. 16).

As the next step, we derived all virtual KLs which have Gauss codes resulting in
nonplanar graphs from basic polyhedra with n ≤ 12 crossings [7]. The basic polyhedra
up to 12 crossings are illustrated in Figs. 17, 18, 19, 20 and 21. All computations are
made in the Mathematica based program LinKnot written by Jablan and Sazdanović
[7].

From the basic polyhedra with n ≤ 12 crossings we derived 593 virtual KLs with
this property. Among them 279 virtual KLs correspond to nonplanar graphs obtained
from Gauss codes have no double bonds, since such graphs can be obtained from KLs
with a smaller number of crossings. For example, the nonplanar graph obtained from
the Gauss code of the virtual knot 8∗i.i with n = 8 crossings can be obtained from the
virtual link 6∗2.i with n = 7 crossings. From the remaining virtual KLs we selected
94 virtual KLs giving different nonplanar graphs. Their list is given in the following
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Fig. 18 The basic polyhedra 10∗, 10∗∗, and 10∗∗∗

Fig. 19 The basic polyhedra 11∗, 11∗∗, and 11∗∗∗

table. The order of crossings corresponds to the labeled images of the basic polyhedra
shown in Figs. 17 and 18. In the following table the basic polyhedra are denoted as
101∗–103∗ instead of 10∗–10∗∗∗, 111∗–113∗ instead of 11∗–11∗∗∗, and 121∗–1212∗
instead of 12A–12L [7].

5 Conclusion

It is well known that one of the main properties of the virtual knot theory is the possi-
bility to represent nonplanar graphs, i.e. graphs embedded on surfaces different from
a plane or sphere. From the mathematical point of view, it is interesting to notice that
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Fig. 20 The basic polyhedra 12A–12F

6∗i 8∗i 9∗.i 9∗i 9∗i : i 101∗i
102∗.i 102∗i 102∗i :: .i 103∗i 103∗i :: i 103∗i.i.i : i
112∗ :: i 112∗ : i 112∗ : i :: i 112∗i 112∗i ::: .i 112∗i :: .i
111∗ ::::: i 111∗ ::: .i 111∗.i 111∗i 111∗i ::::: i 111∗i ::: i
113∗.i 113∗.i :: .i 113∗.i : .i.i.i 113∗i 121∗i 122∗ :::: i
122∗.i 122∗i 122∗i ::: .i 123∗i 123∗i ::: i 123∗i :: .i
123∗i : i 123∗i : i :: .i 123∗i : i :: i 123∗i : i :: i : i 123∗i.i 123∗i.i :::: .i
123∗i.i : i 124∗ ::::: .i 124∗ :: .i 124∗ : .i 124∗ : .i :::: i 124∗ : .i :: i
124∗ : .i : .i 124∗i 124∗i :::: i 124∗i ::: i 124∗i :: .i 124∗i :: .i : .i
125∗.i 125∗.i ::: i 126∗ ::: .i 126∗ :: .i 126∗ :: .i : i 126∗ : .i
126∗ : .i :: i 126∗i 127∗.i 127∗.i :: i 127∗.i : i 127∗i
127∗i :: .i 128∗ :: .i 128∗ :: i 128∗.i 128∗.i ::: .i 128∗.i ::: i
128∗i 128∗i :::: i 128∗i ::: .i 129∗ ::: .i 129∗.i 129∗i
129∗i ::: .i 129∗i ::: .i.i : .i 129∗i ::: .i.i : i 1210∗.i 1210∗.i ::: i 1210∗.i : .i.i : i
1210∗i 1210∗i ::: .i 1210∗i ::: .i.i : i. 1211∗.i 1211∗i 1211∗i ::::: .i
1212∗.i 1212∗i 1212∗i :::: i 1212∗i ::: i

a large portion of virtual KLs, e.g., all rational virtual KLs result in graphs obtained
from their Gauss codes which are planar. In fact, in this way we can assign graphs
to every class of KLs and one of the goals of this research was to establish the crite-
ria for planarity of graphs we obtained. In chemistry, the first molecules synthesized
in attempt to produce molecular knots and links were various kinds of Möbius lad-
ders, which are nonplanar graphs. However, the detailed planarity test of molecular
graphs presented in the paper [25] testifies that nonplanar graphs represent a very small
portion of analyzed organic compounds. The authors concluded with the impression
that “Nature does not like to produce graph-theoretically nonplanar compounds” and
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Fig. 21 The basic polyhedra 12G–12L

that synthesis of nonplanar compounds seems to be inherently difficult. However, we
hope that some of the ideas proposed in this paper and application of the virtual knot
theory to the analysis of chemical nonplanar compounds establishes a new common
ground for knot theory and chemistry.
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